Langkahlangkah menggambar grafik fungsi kuadrat y ax2 + bx + c : 1. Menentukan pembuat nol fungsi y 0 atau f(x) 0 Pembuat nol fungsi dari persamaan kuadrat y ax2 + bx + c diperoleh jika ax2 + bx + c 0. Sehingga diperoleh nilai x yang memenuhi ax2+ bx + c 0. 2. Menentukan sumbu simetri 3.
Suatufungsi f pada himpunan bilangan real (R) yang ditentukan oleh f(x) = ax2 + bx + c dengan a, b, c β R dan a β 0 disebut fungsi kuadrat. Ada dua cara menggambar grafik fungsi kuadrat yaitu dengan menggunakan tabel koordinat bebarapa titik dan menggunakan titik-titik penting yang dilalui grafik.
UjianTulis Berbasis Komputer - Menggambar Grafik Fungsi Kuadrat, Titik Potong, Titik Puncak (Matematika - SBMPTN, UN, SMA) Offered by Unacademy IMATH: Cara Menentukan Sumbu simetri dan Titik Puncak Fungsi Kuadrat Bentuk y = ax2 + bx + c. Persamaan dan fungsi Kuadrat - PINPAM (Pintar Pandai Matematika ) Soal dan Pembahasan - Fungsi
Grafiksuatu fungsi erat kaitannya dengan diagram cartesius, karena grafik suatu pemetaan (fungsi) adalah bentuk diagram Cartesius dari suatu pemetaan (fungsi). Jadi agar Anda mampu memahami cara menggambar grafik dari suatu fungsi (pemetaan) harus paham terlebih dahulu cara penyajian suatu fungsi (pemetaan) khususnya diagram Cartesius.
21 Memahami Konsep Fungsi (rasa ingin tahu) 2.2 Menggambar grafik fungsi aljabar sederhana dan fungsi kuadrat. (kreatif) 2.3 Menggunakan sifat dan aturan tentang persamaan dan pertidaksamaan kuadrat. 2.4 Melakukan manipulasi aljabar dalam perhitungan yang berkaitan dengan persamaan dan pertidaksamaan kuadrat.
Dalamrumus matematika terdapat rumus d fungsi kuadrat yang memang sudah tak asing lagi didengar. Grafik dari fungsi kuadrat berbentuk seperti parabola sehingga sering disebut grafik parabola. Grafik dapat dibuat dengan memasukan nilai x pada interval tertentu sehingga didapat. Karena bagi sebagian siswa materi determinan matriks dengan ordo
5 Menjelaskan manfaat mempelajari Grafik Fungsi dan Garis Lurus Penyajian Menggambar Grafik 6. Menjelaskan bentuk umum fungsi kuadrat y = ax2 + bx + c atau f(x) = ax2 + bx + c 7. Menjelaskan ciri-ciri grafik fungsi kuadrat Diskriminan (D) 8. Menjelaskan langkah-langkah menggambar grafik fungsi kuadrat berdasarkan nilai diskriminan D dalam
MenggambarGrafik Fungsi y = ax2 Menggambar grafik fungsi kuadrat yang paling sederhana, yakni ketika b = c = 0. Untuk mendapatkan grafiknya anda dapat membuat gambar untuk beberapa nilai x dan subsitusikannya pada fungsi y = ax2, misalkan untuk a = 1, a = 2, dan a = -2
Langkah2: menentukan titik potong dengan sumbu. Titik potongnya: Langkah 3: menentukan sumbu simetri grafik fungsi kuadrat. Langkah 4: menentukan titik puncak. Titik puncaknya adalah. Langkah 5: menggambar grafik fungsi kuadrat. Dengan demikian hasil gambar grafik fungsi telah tersaji pada gambar di atas dengan nilai sehingga grafik terbuka ke
Menggambargrafik fungsi non-linear dilakukan dengan menentukan - PDF Document Solusi Persamaan Non-Linier Pada dasarnya solusi suatu persamaan non-linear dengan satu variabel x simbolkan saja fx adalah PENERAPAN EKONOMI FUNGSI NON LINIER Metode numerik persamaan non linier Materi Linear. F x y ax2 bx c dengan a b c R dan a 0 Bentuk
MenggambarGrafik Fungsi linear: y = mx + c Cari titik potong pada sumbu x dan y. Fungsi kuadrat: y = ax2 + bx + c Cari titik potong pada sumbu x dan y Cari sumbu simetri: xs = -b/2a Fungsi kubik: Turunan pertama = 0 Cek tanda + - + - Sketsa grafiknya Fungsi linear: y = mx + c Cari titik potong pd sb. x & y Contoh: gambarkan y = 8 - 2x
MenggambarGrafik Fungsi Aljabar - Di dalam pelajaran matematika kalian pasti diajarkan mengenai cara- cara menggambarkan grafik fungsi aljabar baik yang berupa garis lurus maupun grafik fungsi aljabar dengan bentuk parabola. = ax2 + bx + c. Cara Menggambar Grafik Fungsi Aljabar Catatan: Gambar dan grafik fungsi y = f(x) disebut kurva y = f
soleharipnurmenerbitkan Buku Siswa Matematika Kelas 9 pada 2021-07-14. Bacalah versi online Buku Siswa Matematika Kelas 9 tersebut. Download semua halaman 51-100.
2 Jika pada y = ax 2 + bx + c nilai b bernilai 0, maka fungsi kuadrat akan berbentuk: y = ax 2 + c. yang membuat grafik pada fungsi ini simetris pada x = 0 dan memiliki titik puncak di (0,c) 3. Jika titik puncak ada di titik (h,k), maka fungsi kuadrat menjadi: y = a (x - h) 2 + k. dengan hubungan a, b, dan c dengan h, k adalah sebagai berikut:
CaraMudah Menggambar Grafik Fungsi Kuadrat y = ax2 + bx + c 1. Menentukan titik potong grafik terhadap sumbu X (y = 0) 2. Menentukan titik potong grafik terhadap sumbu Y (x = 0) 3. Menentukan sumbu simetri dan titik puncak. 4. Menentukan titik bantu lainnya untuk membantu menentukan grafik.
gESFZn. Connection timed out Error code 522 2023-06-15 223238 UTC What happened? The initial connection between Cloudflare's network and the origin web server timed out. As a result, the web page can not be displayed. What can I do? If you're a visitor of this website Please try again in a few minutes. If you're the owner of this website Contact your hosting provider letting them know your web server is not completing requests. An Error 522 means that the request was able to connect to your web server, but that the request didn't finish. The most likely cause is that something on your server is hogging resources. Additional troubleshooting information here. Cloudflare Ray ID 7d7e44655c5c1c8f β’ Your IP β’ Performance & security by Cloudflare
Dalam ilmu matematika, fungsi kuadrat adalah salah satu fungsi polinom dengan variabel yang memiliki pangkat tertinggi, yakni 2. Foto Chemistry TutorFungsi kuadrat adalah salah satu materi dalam mata pelajaran matematika. Untuk memahami fungsi kuadrat, dibutuhkan grafik fungsi kuadrat yang dapat menggambarkan sifat dari suatu adanya grafik fungsi kuadrat, seseorang dapat mudah mengetahui cara penyelesaian dari suatu fungsi. Grafik fungsi kuadrat sendiri terdiri dari beberapa jenis. Setiap jenis dari grafik fungsi kuadrat memiliki perbedaan dalam cara membuat grafiknya. Untuk mengenali jenis-jenis grafik fungsi kuadrat dan cara menggambarnya, simak penjelasan di bawah Fungsi KuadratDikutip dari buku Jurus Sakti Menaklukkan Matematika SMA 1, 2, & 3 karya Vani Sugiyono, fungsi kuadrat adalah pemetaan variabel bebas dengan fx mengandung sebuah fungsi variabel kuadrat juga dapat diartikan sebagai suatu fungsi polinom yang memiliki peubah atau variabel dengan pangkat tertingginya adalah 2 dua. fx = ax2 + bx + c, a β 0Untuk menentukan pengaruh dari persamaan kuadrat, gunakan grafik dari fungsi dengan koordinat kuadrat sendiri merupakan kurva parabola yang digambarkan dengan persamaan fungsi y = ax2 + bx + c bentuk umum dari fungsi Muhammad Razali, dkk dalam buku Kalkulus Diferensial, grafik fungsi kuadrat adalah kurva yang memiliki dua sifat, yakni sifat terbuka ke atas dan sifat terbuka ke terbuka ke atas ataupun terbuka ke bawah ditentukan oleh besaran koefsien a terhadap 0, apakah lebih kecil atau lebih nilai a > 0, grafik fungsi kuadrat bersifat terbuka ke atas, sedangkan apabila nilai a oUntuk menggambarkan koordinat kartesius dengan persamaan fungsi kuadrat y = ax2, berikut langkah-langkahnyaMensubstitusikan nilai x ke dalam persamaan y = ax2Tempatkan titik-titik koordinat yang berada pada tabel pada bidang koordinatBuatlah sketsa grafik fungsi kuadrat dengan menghubungkan titik-titik koordinat dalam fungsi Grafik Fungsi y = ax2 + bx + c, a β 0Ilustrasi seseorang mempelajari cara membuat grafik fungsi kuadrat. Foto satu jenis grafik fungsi kuadrat adalah grafik dengan fungsi y= ax2 + bx + c, a β 0. Berikut cara menggambar jenis grafik iniSubstitusikan nilai x ke dalam persamaan y = ax2 + bx + c, a β 0Buatlah titik-titik koordinat yang telah hubungkan titik-titik koordinat yang telah ditentukan pada bidang Grafik Fungsi y = x2 + bxGrafik fungsi y = x2 + bx dengan syarat c = 0, b β 0 dapat dibuat dengan cara berikutGunakan metode substitusi nilai atau variabel x pada persamaan fungsi y = x2 + bxSelanjutnya, tentukan letak dari titik-titik itu, gabungkan seluruh titik-titik koordinat dengan menarik garis yang mengikuti letak dari setiap titik koordinat.
Hai sobat I-Math, pada kesempatan ini akan kami berikan cara menggambar grafik fungsi kuadrat dengan cara-cara yang mudah dengan menentukan titik-titik koordinat baku yang terdapat pada grafik fungsi kuadrat. Ingat bahwa ciri khas grafik fungsi kuadrat adalah pada bantuknya yang seperti parabola, memiliki titik puncak, dan simetris. Nah, bagaimana cara menggambar atau melukis grafik fungsi kuadrat? Bentuk-bentuk persamaan grafik fungsi kuadrat sebagai berikut. 1. y = x2 + 4x β 5 2. y = x2 - 6x + 8 3. y = -x2 + 2x + 15 4. y = 2x2 + 5x β 12 Nah, bagaimana cara menggambar grafik fungsi kuadrat tersebut? Langkah-langkah menggambar grafik fungsi kuadrat sebagai berikut. 1. Menentukan titik potong grafik terhadap sumbu X y = 0 2. Menentukan titik potong grafik terhadap sumbu Y x = 0 3. Menentukan sumbu simetri dan titik puncak. 4. Menentukan titik bantu lainnya untuk membantu menentukan grafik. Untuk lebih jelasnya cara menggambar grafik fungsi kuadrat, perhatikan cara menggambar grafik fungsi kuadrat di atas. 1. Menggambar grafik y = x2 + 4x β 5 Langkah-langkah i Menentukan titik potong terhadap sumbu X y = 0 y = x2 + 4x β 5 0 = x2 + 4x β 5 atau x2 + 4x β 5 = 0 x + 5x β 1 = 0 x = -5 atau x = 1 Diperoleh titik potong terhadap sumbu X -5, 0 dan 1, 0. ii Menentukan titik potong terhadap sumbu Y x = 0 y = x2 + 4x β 5 y = 02 + 40 β 5 y = 0 - 0 β 5 y = -5 Diperoleh titik potong terhadap sumbu Y 0, -5. Titik puncak xs, fxs Substitusikan nilai x = -2 ke persamaan fungsi kuadrat. y = x2 + 4x β 5 y = -22 + 4-2 β 5 y = 4 β 8 β 5 y = -9 Jadi, diperoleh titik puncak -2, -9. iv Menentukan titik bantu lainnya. Untuk x = 2 y = 22 + 42 β 5 y = 4 + 8 β 5 y = 7 Diperoleh titik 2, 7. Untuk x = -4 y = -42 + 4-4 β 5 y = 16 β 16 β 5 y = -5 Diperoleh titik -4, -5. Dengan demikian secara umum grafik fungsi y = x2 + 4x β 5 melalui titik -5, 0; -4, -5; -2, -9; 0, -5 ; 1, 0 dan 2, 7. Grafik fungsi y = x2 + 4x β 5 sebagai berikut. 2. Menggambar grafik y = x2 - 6x + 8 Langkah-langkah i Menentukan titik potong terhadap sumbu X y = 0 y = x2 - 6x + 8 0 = x2 - 6x + 8 atau x2 - 6x + 8 = 0 x - 2x β 4 = 0 x = 2 atau x = 4 Diperoleh titik potong terhadap sumbu X 2, 0 dan 4, 0. ii Menentukan titik potong terhadap sumbu Y x = 0 y = x2 - 6x + 8 y = 02 - 60 + 8 y = 0 β 0 + 8 y = 8 Diperoleh titik potong terhadap sumbu Y 0, 8. Titik puncak xs, fxs Substitusikan nilai x = 3 ke persamaan fungsi kuadrat. y = x2 - 6x + 8 y = 32 - 63 + 8 y = 9 β 18 + 8 y = -1 Jadi, diperoleh titik puncak 3, -1. iv Menentukan titik bantu lainnya. Untuk x = 5 y = x2 - 6x + 8 y = 52 - 65 + 8 y = 25 β 30 + 8 y = 3 Diperoleh titik 5, 3. Untuk x = -1 y = x2 - 6x + 8 y = -12 - 6-1 + 8 y = 1 + 6 + 8 y = 15 Diperoleh titik -1, 15. Dengan demikian secara umum grafik fungsi y = x2 - 6x + 8 melalui titik -1, 15; 0, 8; 2, 0; 3, -1 ; 4, 0 dan 5, 3. Grafik fungsi y = x2 - 6x + 8 sebagai berikut. 3. Menggambar grafik y = -x2 + 2x + 15 Langkah-langkah i Menentukan titik potong terhadap sumbu X y = 0 y = -x2 + 2x + 15 0 = -x2 + 2x + 15 atau -x2 + 2x + 15 = 0 x2 - 2x - 15 = 0 x + 3x β 5 = 0 x = -3 atau x = 5 Diperoleh titik potong terhadap sumbu X -3, 0 dan 5, 0. ii Menentukan titik potong terhadap sumbu Y x = 0 y = -x2 + 2x + 15 y = -02 + 20 + 15 y = 0 + 0 + 15 y = 15 Diperoleh titik potong terhadap sumbu Y 0, 15. Titik puncak xs, fxs Substitusikan nilai x = 1 ke persamaan fungsi kuadrat. y = -x2 + 2x + 15 y = -12 + 21 + 15 y = -1 + 2 + 15 y = 16 Jadi, diperoleh titik puncak 1, 16. iv Menentukan titik bantu lainnya. Untuk x = -2 y = -x2 + 2x + 15 y = -22 + 2-2 + 15 y = -4 + -4 + 15 y = 7 Diperoleh titik -2, 7. Untuk x = 3 y = -x2 + 2x + 15 y = -32 + 23 + 15 y = -9 + 6 + 15 y = 12 Diperoleh titik 3, 12. Dengan demikian secara umum grafik fungsi y = -x2 + 2x + 15 melalui titik -3, 0; -2, 7; 1, 16; 0, 15 ; 3, 12 dan 5, 0. Grafik fungsi y = -x2 + 2x + 15 sebagai berikut. Demikianlah sekilas materi tentang cara menggambar gafik fungsi kuadrat. Semoga bermanfaat. Nah, sekarang cobalah soal nomor 4 di atas. Selamat mencoba.
UNTUK KELAS IX SMPMODUL FUNGSIKUADRAT DISUSUN OLEH KRESNANDIKA W UNIVERSITAS PGRI YOGYAKARTATINJAUAN MATA PELAJARAN A. Deskripsi mata pelajaran. Matematika merupakan salah satu pelajaran yang wajib diterima siswa dalam pembelajaran di sekolah. Belajar matematika sangatlah menuntut anda untuk berpikir. Setiap orang memiliki kemampuan yang berbeda-beda dalam berpikir. Ada kemampuan berfikirnya cepat ada juga yang lambat. Dengan mengerjakan penyelesaian soal dapat melatih cara berpikir anda untuk lebih keras lagi. Ketika jawaban anda salah, harus diperbaiki sampai jawabannya benar. Sehingga tujuan anda untuk menyelesaikan soal tersebut mendapat hasil yang memuaskan. Untuk kali ini, materi yang akan dibahas yaitu materi fungsi kuadrat. Untuk materi diantaranya 1. Persamaan fungsi kuadrat. 2. Tabel fungsi kuadrat. 3. Grafik fungsi kuadrat. B. Kegunaaan mata pelajaran. Mata pelajaran fungsi kuadrat memiliki kegunaan, baik bagi guru maupunpeserta didik. Guru lebih mudah mengajar bahan ajar jika terkonsep. Peserta didik jiga akan merasa lebih mudah mengikuti dan akan tertarik terhadap pelajaran yang disajikan secara sisrematis, komunikatif, dan integrative. Selain itu, dengan adanya penggunaan bahasa yang sederhana serta contoh kegunaan akan membuat pesera didik lebih termotivasi untuk belajar. Keteranpilan yang perlu ditingkatkan adalah berfikir secara kritis dan kreatif, membaca soal, dan menulis jawaban secara urut dan teratur. Kegunaan mata pelajaran fungsi kuadrat dalam kehidupan sehari-hari adalah membantu menjadi pribadi yang lebih teliti, cermat, tidak ceroboh, mampu berfikir secara sistematis, kritis, dan kreatif. Selain itu, matematika boleh dibilang menjadi cara bagi manusia untuk memahami aturan-aturan yang berlaku di alam semesta. Begitu pula dengan fungsi kuadrat, yang dapat memudahkan kita memecahkan persoalan. Contoh aplikasi fungsi kuadrat bisa kita perhatikan pada contoh soal di bawah ini. Contoh soal dari dua bilangan genap yang berurutan adalah 580. Berapakah bilangan genap yang berurutan tersebut?MODUL FUNGSI KUADRAT UNTUK SMP KELAS IXKita dapat mengumpamakan bahwa bilangan pertama adalah a dan bilangan kedua adalah a+2. Diketahui bahwa a2 + a+22 = 580. Dengan menyederhanakan bentuk persamaan dan faktorisasi persamaan kuadrat, kita akan memperoleh a2 + a+22 = 580 a2 + a2 + 4a + 4 = 580 2a2 + 4a β 576 = 0 a2 + 2a β 288 = 0 a β 16 a β 18 = 0 Berdasarkan bentuk terakhir persamaan kuadrat tersebut, kita dapat menyimpulkan bahwa bilangan genap yang dimaksud adalah 16 dan 18. Tapi, bagaimana sebenarnya aplikasi fungsi kuadrat di kehidupan sehari-hari? Ternyata, kurva dari fungsi kuadrat sering lho kita temui. Kurva fungsi kuadrat sangat disukai karena bentuknya yang simetris dan mirip dengan parabola. Arsitektur yang memiliki bentuk melengkung simetris, seperti tiang jembatan, juga dibangun dengan berpatokan pada rumus fungsi kuadrat. Fungsi kuadrat juga bisa digunakan untuk menyelesaikan permasalahan yang berkaitan dengan proyektil karena kurvanya juga menyerupai lintasan benda jatuh. Kita bisa menghitung puncak tertinggi benda yang dilempar atau kecepatan bola pada lintasan parabola dengan persamaan fungsi kuadrat. C. Kompetensi dasar. KD Menjelaskan fungsi kuadrat dengan menggunakan tabel, persamaan, dan grafik KD Menyajikan fungsi kuadrat menggunakan tabel, persamaan, dan grafik. D. Bahan pendukung lainnya. Media / alat 1. Laptop. 2. LCD. 3. Media pembelajaran berupa alat peraga. Bahan 1. LKS materi tentang fungsi kuadrat. Sumber belajar 1. Buku paket/ Buku pelajaran matematika kelas FUNGSI KUADRAT UNTUK SMP KELAS IXE. Petunjuk Belajar. Berikut adalah langkah-langkah yang disarankan bagi peserta didik dalam menggunakan bahan ajar ini. 1. Materi modul terbagi atas 3 kegiatan belajar siswa yaitu kegiatan belajar 1, kegiatan belajar 2, dan kegiatan belajar 3. 2. Bacalah terlebih dahulu kompetensi yang harus dicapai yang terletak sebelum pembahasan. 3. Pahami uraian materi dengan seksama dan perhatikan contoh soal yang diberikan dengan sebaik-baiknya. 4. Kerjakan latihan soal yang ada dalam setiap sub-materi. 5. Bacalah kembali rangkuman yang ada di akhir modul. 6. Kerjakan tes formatif yang ada di akhir FUNGSI KUADRAT UNTUK SMP KELAS IXPENDAHULUAN A. Cakupan isi modul. Modul ini berisi tentang fungsi kuadrat yang tentunya akan membahas seputar fungsi kuadrat. Modul ini dikhususkan untuk siswa SMP terttama kelas IX. Pada modul ini terdapat juga materi sekaligus contoh dari persoalan terkait fungsi kuadrat. Dengan ditambahkan latihan soal siswa diharapkan mampu menyerap ilmu terkait fungsi kuadrat dengan mudah. Pada materi ini akan dibagi menjadi 3 sub bab, yaitu 1. Fungsi kuadrat dengan menggunakan tabel. 2. Fungsi kuadrat dengan menggunakan persamaan. 3. Fungsi kuadrat dengan menggunakan grafik. B. Indikator yang ingin dicapai melalui sajian materi dan kegiatan modul. Menjelaskan fungsi kuadrat dengan menggunakan tabel. Menjelaskan fungsi kuadrat dengan menggunakan persamaan. Menjelaskan fungsi kuadrat dengan menggunakan grafik. Menyajikan fungsi kuadrat dengan menggunakan tabel Menyajikan fungsi kuadrat dengan menggunakan peramaan. Menyajikan fungsi kuadrat dengan menggunakan grafik. C. Deskripsi perilaku awal entry behaviour. Modul ini merupakan bagian dari mata pelajaran yang secara khusus membahas terkait fungsi kuadrat. Secara konseptual modul ini dirancang untuk memfasilitasi mahasiswa agar mampu menganalisis karakteristik konseptual Belajar dan Pembelajaran beserta implikasinya terhadap pendidikan yang terkait pada proses pembelajaran. Secara umum setelah mempelajari modul ini Anda diharapkan mampu menganalisis karakteristik konseptual dan penerapan konsep belajar dan pembelajaran secara komprehensif. D. Relevansi. Pembelajaran SMP saat ini diarahkan untuk mengembangkan kemampuan berpikir tinggi atau yang dikenal dengan Higher Order Thinking Skills HOTS bukan lagi Lower Order Thinking Skills LOTS. Begitu pula pada pembelajaran matematika, termasuk pada materi pokok atau kompetensi dasarnya. Tujuan dari penelitian ini adalah untuk mengetahui relevansi materi pokok matematika SMP pada materi fungsi kuadrat dengan HOTS. Pengumpulan data dalam penelitian ini dilakukan dengan studi pustaka library research. Data primer yang digunakan adalah buku guru dan buku siswa kelas IX, sedangkan data sekundernya adalah teori- teori maupun gagasan dari buku dan jurnal ilmiah yang relevan. Analisis data dilakukan dengan analisis isi content analysis. Hasil dalam penelitian ini adalah materi pokok matematika pada buku siswa kelas IX belum relevan dengan HOTS. Sebagian besar indikator matematika pada buku siswa kelas IX masih termasukMODUL FUNGSI KUADRAT UNTUK SMP KELAS IXdalam LOTS C1, C2, dan C3. Agar dapat relevan dengan HOTS, guru sebaiknya melakukan pengembangan materi yang dapat dimulai dengan menyusun kembali indikator matematika, pembelajaran, dan penilaian yang disesuaikan dengan aspek- aspek HOTS. E. Kegiatan belajar. 1. Kegiatan 1 tentang fungsi kuadrat dengan menggunakan tabel. 2. Kegiatan 2 tentang fungsi kuadrat dengan menggunakan persamaan. 3. Kegiatan 3 tentang fungsi kuadrat dengan menggunakan grafik. F. Petunjuk modul. Modul materi Fungsi Kuadrat ini disusun untuk membantu peserta didik kelas IX dalam mengembangkan kemampuanmemahami fungsi kuadrat dengan menggunakan tabel, persamaan dan grafik. Dalam penyusunannya, bahan ajar ini disesuaikan dengan Kompetensi Inti dan Kompetensi Dasar Kurikulum 2013 yang berlaku saat ini. Bahan ajar matematika materi Fungsi Kuadratini juga mempelajari matematika khususnya dalam materi menjelaskan dan menyajikan fungsi kuadrat dengan menggunakan tabel, persamaan, dan grafik. Sistematika bahan ajar ini adalah sebagai berikut 1. Sebelum menginjak pada pembahasan, bahan ajar ini diawali dengan paparan kompetensi yang harus dicapai oleh peserta didik. 2. Materi pembahasan diawali dengan stimulus berupa contoh kasus nyata atau pun permasalahan matematis serta aktivitas relevan. 3. Uraian materi merupakan materi pokok/materi pembelajaran dalam bahan ajar. Materi disajikan dengan bahasa yang sederhana sehingga mudah dipahami. 4. Setiap pembahasan sub materi dilengkapi dengan contoh soal untuk memperjelas konsep yang dipelajari. 5. Latihan berisi soal-soal untuk menguji kemampuan peserta didik dalam memahami materi yang dipelajari. Latihan yang disajikan sudah disesuaikan dengan indikator-indikator menerapkan dan memecahkan masalah pecahan dalam kehidupan sehari-hari. 6. Rangkuman berisi pokok-pokok pembicaraan materi yang telah selesai dipelajari. 7. Tes formatif berisi soal-soal untuk melihat kemampuan menerapkan dan memecahkan masalah pecahan dalam kehidupan FUNGSI KUADRAT UNTUK SMP KELAS IXPETA KONSEPMODUL FUNGSI KUADRAT UNTUK SMP KELAS IXPRA KEGIATAN BELAJAR PRA KEGIATAN BELAJAR Sebelumnya, kalian telah mempelajari persamaan linear dan persamaan kalian masih ingat tentang materi tersebut? Mari kita ulang sebentar materi tersebutdengan menjawab soal berikut.ο Persamaan Linear 1. 3x + 1 = -7Penyelesaian1. 3x + 1 = -73x + 1 - 1 = -7 -13x = -83 = β83 3 β8 x = 3ο Persamaan Kuadrat Saat kalian melempar bola ke udara, ketinggian bola tergantung pada tiga faktor, yaitu posisi awal, kecepatan saat bola di lemparkan, dan gaya gravitasi. Gravitasi bumi menyebabkan bola yang terlempar ke atas mengalami percepatan ketika benda semakin mendekati bumi . Besar percepatan gravitasi bumi sebesar 9,8 m/s2. Ini berarti bahwa kecepatan bola ke bawah meningkat 9,8 m/s untuk setiap detik di udara. Jika kalian menyatakan ketinggian bola pada setiap waktu dengan suatu persamaan, maka persamaan yang terbentuk adalah persamaan kuadrat. KEGIATAN BELAJAR FUNGSI KUADRAT Fungsi kuadrat adalah fungsi yang berbentuky = ax2 + bx + c, dengan a β 0, x, y kuadrat dapat pula dituliskan sebagai fx = ax2 + bx + c. Bagaimanakah caramenggambar fungsi kuadrat pada bidang kartesius? Apa pengaruh nilai a, b, dan c terhadapgrafik fungsi kuadrat?MODUL FUNGSI KUADRAT UNTUK SMP KELAS IXKEGIATAN BELAJAR 1Kegiatan 1 fungsi kuadrat dengan menggunakan tabelFungsi kuadrat dapat digambarkan ke dalam koordinat kartesius sehinggadiperoleh suatu grafik fungsi kuadrat. Sumbu x adalah domain dan sumbu y adalahkodomain. Grafik dari fungsi kuadrat berbentuk seperti parabola sehingga sering disebutgrafik parabola. Untuk menyajikan suatu fungsi kuadrat ada 3 langkah yang harus kamulakukan, yaitu ο· Membuat tabel fungsi kuadratο· Tempatkan titik-titik koordinat yang berada dalam tabel pada bidang koordinatο· Sketsa grafik dengan menghubungkan titik-titik koordinat tersebutAgar kamu lebih paham menyajikan fungsi kuadrat marilah kita coba tampilan LATIHANKegiatan 1 menggambar Grafik Fungsi y = ax2 Menggambar grafik fungsi kuadrat yang paling sederhana, yakni ketika b = c = mendapatkan grafiknya kamu dapat membuat gambar untuk beberapa nilai x dansubsitusikannya pada fungsi y = ax2, misalkan untuk a = 1, a = 2, dan a = -2Untuk mendapatkan grafik suatu fungsi kuadrat , kamu terlebih dahulu harus mendapatkanbeberapa titik koordinat yang dilalui oleh fungsi kuadrat Melengkapi tabely= x2 x,y y=2x2 x,y -3 -32 -3,18-3 -32 -3,9 -2 -22 -2,8 y=-2x2 x,y -1 -12 -1,2 -3 -32 -3,-18-2 -22 -2,4 0 02 0,0 -2 -22 -2,-8 1 12 1,2 -1 -12 -1,-2-1 -12 -1,1 2 22 2,8 0 02 0,0 3 32 3,18 1 12 1,-20 02 0,0 2 22 2,-8 3 32 3,-181 12 1,12 22 2,43 32 3,9MODUL FUNGSI KUADRAT UNTUK SMP KELAS IX2. Tempatkan titik-titik koordinat yang berada dalam tabel pada bidang koordinat gunakan tiga warna berbeda 3. Sketsa grafik dengan menghubungkan titik-titik koordinat tersebut Ket Kurvay = x2 ditandai dengan warna biru Kurvay = 2x2 ditandai dengan warna hijau Kurvay = -2x2ditandai dengan warna merahB. RAMBU-RAMBU LATIHAN Nilai a pada fungsi y = ax2akan mempengaruhi bentuk grafiknya - Jika a > 0 maka grafiknya akan terbuka ke atas - Jika a 0 dan nilai a makin besar maka grafiknya akan semakin βkurusβ - Jika a 0 dan bergeser c satuan ke bawah jika c 0 dan bergeser c satuan ke bawah jika c 0 maka grafiknya y = ax2 + bx + c memiliki titik puncak a 0 maka grafiknya akan terbuka ke atas - Jika a 0 dan nilai a makin besar maka grafiknya akan semakin βkurusβ - Jika a 0 dan bergeser c satuan ke bawah jika c 0 maka grafiknya y = ax2 + bx + cmemiliki titik puncak minimum. Jika a < 0 maka grafik y = ax2 + bx + c memiliki titik pucak Nilai c pada grafik y = ax2 + bx + c menunjukkan titik perpotongan grafik fungsi kuadrat tersebut dengan sumbu β Y, yakni pada koordinat c,0.MODUL FUNGSI KUADRAT UNTUK SMP KELAS IXTES NORMATIF1. Dengan tabel, gambarlah grafik fungsi kuadrat y = 1 2 2 1 y = 2 2 x,y-3-2-101232. Dengan persamaan, lengkapi tabel dan gambarlah grafik fungsi kuadrat y = 2 + x y = 2 + x x,y-3-2-101233. Menggunakan grafik, lengkapi tabel dan gambarlah fungsi kuadrat y = x2- x - 2 y = x2 -x -2 x,y-3-2-10MODUL FUNGSI KUADRAT UNTUK SMP KELAS IX1 2 3MODUL FUNGSI KUADRAT UNTUK SMP KELAS IXKUNCI JAWABAN TES NORMATIF KUNCI JAWABANNO PENYELESAIAN SKOR BOBOT1. 2. Lengkapi tabel y = 1 2 x,y 2 1 -3 4,5 -3;4,5 1 1 -2 2 -2;2 -1 0,5 -1;0,5 00 0;0 1 1 0,5 1;5 1 22 2;2 1 3 4,5 3;4,5 1 3. Tempatkan titik-titik koordinat dalam tabel pada bidang koordinat 4. Sketsa grafik dengan menghubungkan titik-titik koordinat tersebut 8MODUL FUNGSI KUADRAT UNTUK SMP KELAS IXJumlah 15 151. 1. Lengkapi tabel 1 1y = 2 + x x,y 1 1-3 6 -3,6 1 1-2 2 -2,2 1-1 0 -1,000 0,012 1,226 2,63 12 3,121. Tempatkan titik-titik koordinat dalam tabel pada bidang koordinat2. Sketsa grafik dengan menghubungkan titik-titik koordinat tersebut 8 Jumlah 15 15MODUL FUNGSI KUADRAT UNTUK SMP KELAS IX3. 1. Lengkapi tabel y = x2 -x -2 x,y-3 10 -3,10-2 4 -2,4-1 0 -1,00 -2 0,-21 -2 1,-220 2,034 3,42. Tempatkan titik-titik koordinat dalam tabel pada bidang koordinat3. Sketsa grafik dengan menghubungkan titik-titik koordinat tersebut Jumlah 15 15MODUL FUNGSI KUADRAT UNTUK SMP KELAS IXSkor Maksimum 45 45SKOR = β 100 45MODUL FUNGSI KUADRAT UNTUK SMP KELAS IXDAFTAR PUSTAKAKementrian Pendidikan dan Kebudayaan. 2014. Buku Panduan Guru Matematika SMP KelasIX Edisi Revisi 2014 Kurikulum 2013. Jakarta Pusat Kurikulum dan Perbukuan Pendidikan dan Kebudayaan. 2014. Buku Panduan Siswa Matematika SMPKelas IX Edisi Revisi 2014 Kurikulum 2013. Jakarta Pusat Kurikulum dan PerbukuanBalitbang KemendikbudMODUL FUNGSI KUADRAT UNTUK SMP KELAS IX
menggambar grafik fungsi y ax2